• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer
  • IEEE.org
  • IEEE Xplore
  • IEEE Standards
  • IEEE Spectrum
  • More Sites

IEEE Robotics & Automation Magazine

  • IEEE.org
  • IEEE Xplore
  • IEEE Standards
  • IEEE Spectrum
  • More Sites

Adaptation models

An Interactive Augmented Reality Interface for Personalized Proxemics Modeling: Comfort and Human–Robot Interactions

September 10, 2025 by Massimiliano Nigro, Amy O Connell, Thomas Groechel, Anna-Maria Velentza, Maja Matarić

Understanding and respecting personal space preferences is essential for socially assistive robots designed for older adult users. This work introduces and evaluates a novel personalized context-aware method for modeling users’ proxemics preferences during human-robot interactions. Using an interactive augmented reality interface, we collected a set of user-preferred distances … [Read more...] about An Interactive Augmented Reality Interface for Personalized Proxemics Modeling: Comfort and Human–Robot Interactions

GeMuCo: Generalized Multisensory Correlational Model for Body Schema Learning

June 24, 2025 by Kento Kawaharazuka, Kei Okada, Masayuki Inaba

Humans can autonomously learn the relationship between sensation and motion in their own bodies, estimate and control their own body states, and move while continuously adapting to the current environment. On the other hand, current robots control their bodies by learning the network structure described by humans from their experiences, making certain assumptions on the … [Read more...] about GeMuCo: Generalized Multisensory Correlational Model for Body Schema Learning

Deep Predictive Model Learning With Parametric Bias: Handling Modeling Difficulties and Temporal Model Changes

December 12, 2024 by Kento Kawaharazuka, Kei Okada, Masayuki Inaba

When a robot executes a task, it is necessary to model the relationship among its body, target objects, tools, and environment, and to control its body to realize the target state. However, it is difficult to model them using classical methods if the relationship is complex. In addition, when the relationship changes with time, it is necessary to deal with the temporal changes … [Read more...] about Deep Predictive Model Learning With Parametric Bias: Handling Modeling Difficulties and Temporal Model Changes

Online Tuning of Control Parameters for Off-Road Mobile Robots

September 20, 2023 by Ashley D. Hill

This article addresses the problem of online adaptation of control parameters, dedicated to a path tracking problem in off-road conditions. Two approaches are offered to modify the tuning gain of a previously developed adaptive and predictive control law. The first approach is a deterministic method based on dynamic equations of the system, allowing the adaptation of the … [Read more...] about Online Tuning of Control Parameters for Off-Road Mobile Robots

Tumbling Robot Control Using Reinforcement Learning: An Adaptive Control Policy That Transfers Well to the Real World

June 28, 2023 by Andrew Schwartzwald

Tumbling robots are simple platforms that are able to traverse large obstacles relative to their size, at the cost of being difficult to control. Existing control methods apply only a subset of possible robot motions and make the assumption of flat terrain. Reinforcement learning (RL) allows for the development of sophisticated control schemes that can adapt to diverse … [Read more...] about Tumbling Robot Control Using Reinforcement Learning: An Adaptive Control Policy That Transfers Well to the Real World

Next Page »

Primary Sidebar

Current Issue

Get the entire issue now.

 

About the Magazine

IEEE Robotics & Automation Magazine (RAM) has over 14,000 readers who are the people who drive this remarkable technology. More than half work in basic research and many of the others are top level engineers and decision-makers in industry.  This magazine highlights new concepts in Robotics and Automation that are applied to real-world systems. It delivers tutorial and survey papers by distinguished experts in the field, organizes focused special issues on hot topics, and provides a forum for disseminating and discussing emerging trends, novel achievements, and selected news relevant to the development of the whole community active in these fields worldwide.

Past Issues

Search

Footer

LINKS

Home | Contact IEEE | Accessibility |
Nondiscrimination  Policy | IEEE Ethics Reporting | Terms & Disclosures| IEEE Privacy Policy

© Copyright 2025 IEEE – All rights reserved. A public charity, IEEE is the world’s largest technical professional organization dedicated to advancing technology for the benefit of humanity.

ABOUT US

IEEE Robotics & Automation Magazine  publishes four issues per year: March, June, September and December.