• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer
  • IEEE.org
  • IEEE Xplore
  • IEEE Standards
  • IEEE Spectrum
  • More Sites

IEEE Robotics & Automation Magazine

  • IEEE.org
  • IEEE Xplore
  • IEEE Standards
  • IEEE Spectrum
  • More Sites

Deep Predictive Model Learning With Parametric Bias: Handling Modeling Difficulties and Temporal Model Changes

December 12, 2024 by Kento Kawaharazuka, Kei Okada, Masayuki Inaba

When a robot executes a task, it is necessary to model the relationship among its body, target objects, tools, and environment, and to control its body to realize the target state. However, it is difficult to model them using classical methods if the relationship is complex. In addition, when the relationship changes with time, it is necessary to deal with the temporal changes of the model. In this study, we have developed Deep Predictive Model with Parametric Bias (DPMPB) as a more human-like adaptive intelligence to deal with these modeling difficulties and temporal model changes. We categorize and summarize the theory of DPMPB and various task experiments on the actual robots, and discuss the effectiveness of DPMPB.

For more about this article see link below.

https://ieeexplore.ieee.org/document/10105648

For the open access PDF link of this article please click here.

Filed Under: Past Features Tagged With: Adaptation models, Behavioral sciences, Floors, Predictive models, Robot sensing systems, Robots, Task analysis

Primary Sidebar

Current Issue

Get the entire issue now.

 

About the Magazine

IEEE Robotics & Automation Magazine (RAM) has over 14,000 readers who are the people who drive this remarkable technology. More than half work in basic research and many of the others are top level engineers and decision-makers in industry.  This magazine highlights new concepts in Robotics and Automation that are applied to real-world systems. It delivers tutorial and survey papers by distinguished experts in the field, organizes focused special issues on hot topics, and provides a forum for disseminating and discussing emerging trends, novel achievements, and selected news relevant to the development of the whole community active in these fields worldwide.

Past Issues

Search

Footer

LINKS

Home | Contact IEEE | Accessibility |
Nondiscrimination  Policy | IEEE Ethics Reporting | Terms & Disclosures| IEEE Privacy Policy

© Copyright 2025 IEEE – All rights reserved. A public charity, IEEE is the world’s largest technical professional organization dedicated to advancing technology for the benefit of humanity.

ABOUT US

IEEE Robotics & Automation Magazine  publishes four issues per year: March, June, September and December.