Reinforcement learning (RL) offers a promising solution for controlling humanoid robots, particularly for bipedal locomotion, by learning adaptive and flexible control strategies. However, direct RL application is hindered by time-consuming trial-and-error processes, necessitating training in simulation before real-world transfer. This introduces a reality gap that degrades … [Read more...] about Bridging the Reality Gap: Analyzing Sim-to-Real Transfer Techniques for Reinforcement Learning in Humanoid Bipedal Locomotion
Perturbation methods
Reinforcement-Learning-Based Local Search Approach to Integrated Order Batching: Driving Growth for Logistics and Retail
As an important part of Industry 4.0, a smart warehouse can offer smart tips and operational constraints for users. Improving its work efficiency is a promising growth driver for logistics companies and retailers. Therefore, a reinforcement-learning-based adaptive iterated local search (RAILS) approach is proposed to improve order-picking efficiency for a smart warehouse. A … [Read more...] about Reinforcement-Learning-Based Local Search Approach to Integrated Order Batching: Driving Growth for Logistics and Retail