In an extreme environment, such as Mars or a volcanic area, mobile robots have been used in scientific missions, or as precursors for a future manned mission. The robot called a planetary exploration rover is managed by a space-qualified, radiation-hardened, and low-clock onboard computer, and autonomously travels over challenging terrain. For more about this … [Read more...] about Uncertainty-Aware Trajectory Planning: Using Uncertainty Quantification and Propagation in Traversability Prediction of Planetary Rovers
Uncertainty
Superresolution of Lunar Satellite Images for Enhanced Robotic Traverse Planning: Maximizing the Value of Existing Data Products for Space Robotics
Lunar exploration missions require detailed and accurate planning to ensure their safety. Remote sensing data, such as optical satellite imagery acquired by lunar orbiters, are key for the identification of future landing and mission sites. Here robot- and astronaut-scale obstacles are the most relevant to resolve; however, the spatial resolution of the available image data is … [Read more...] about Superresolution of Lunar Satellite Images for Enhanced Robotic Traverse Planning: Maximizing the Value of Existing Data Products for Space Robotics
A Robust Visual Servoing Controller for Anthropomorphic Manipulators With Field-of-View Constraints and Swivel-Angle Motion
Human–robot collaboration has attracted significant attention in the industry due to the flexibility of humans and the accuracy of robots. Humanoid control of anthropomorphic robotic arms combined with visual servoing will enhance the intelligence of industrial robots. However, the robotic manipulator will introduce psychological discomfort to nearby humans, and the loss of … [Read more...] about A Robust Visual Servoing Controller for Anthropomorphic Manipulators With Field-of-View Constraints and Swivel-Angle Motion