• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer
  • IEEE.org
  • IEEE Xplore
  • IEEE Standards
  • IEEE Spectrum
  • More Sites

IEEE Robotics & Automation Magazine

  • IEEE.org
  • IEEE Xplore
  • IEEE Standards
  • IEEE Spectrum
  • More Sites

Hands

Dynamic Importance-Weighted Fusion Network Based on Dynamic Convolutions for Hand Posture Recognition: A Technique Based on Red, Green, Blue Plus Depth Cameras

September 10, 2025 by Jing Qi, Li Ma, Yushu Yu

Hand posture recognition technology makes humancomputer interaction more natural and efficient. Existing hand posture recognition algorithms are mainly based on RGB images or depth data, each of which has its limitations: the former is susceptible to the interference of lighting and background color, while the latter is difficult to capture details and affects accuracy. To … [Read more...] about Dynamic Importance-Weighted Fusion Network Based on Dynamic Convolutions for Hand Posture Recognition: A Technique Based on Red, Green, Blue Plus Depth Cameras

Human–Humanoid Robots’ Cross-Embodiment Behavior-Skill Transfer Using Decomposed Adversarial Learning From Demonstration: HOTU, a Human–Humanoid Robots’ Skill Transfer Framework

March 18, 2025 by Junjia Liu, Zhuo Li, Minghao Yu, Zhipeng Dong, Sylvain Calinon, Darwin Caldwell, Fei Chen

Humanoid robots are envisioned as embodied intelligent agents capable of performing a wide range of human-level loco-manipulation tasks, particularly in scenarios that require strenuous and repetitive labor. However, learning these skills is challenging due to the high degrees of freedom of humanoid robots, and collecting sufficient training data for humanoid is a laborious … [Read more...] about Human–Humanoid Robots’ Cross-Embodiment Behavior-Skill Transfer Using Decomposed Adversarial Learning From Demonstration: HOTU, a Human–Humanoid Robots’ Skill Transfer Framework

Primary Sidebar

Current Issue

Get the entire issue now.

 

About the Magazine

IEEE Robotics & Automation Magazine (RAM) has over 14,000 readers who are the people who drive this remarkable technology. More than half work in basic research and many of the others are top level engineers and decision-makers in industry.  This magazine highlights new concepts in Robotics and Automation that are applied to real-world systems. It delivers tutorial and survey papers by distinguished experts in the field, organizes focused special issues on hot topics, and provides a forum for disseminating and discussing emerging trends, novel achievements, and selected news relevant to the development of the whole community active in these fields worldwide.

Past Issues

Search

Footer

LINKS

Home | Contact IEEE | Accessibility |
Nondiscrimination  Policy | IEEE Ethics Reporting | Terms & Disclosures| IEEE Privacy Policy

© Copyright 2025 IEEE – All rights reserved. A public charity, IEEE is the world’s largest technical professional organization dedicated to advancing technology for the benefit of humanity.

ABOUT US

IEEE Robotics & Automation Magazine  publishes four issues per year: March, June, September and December.