• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer
  • IEEE.org
  • IEEE Xplore
  • IEEE Standards
  • IEEE Spectrum
  • More Sites

IEEE Robotics & Automation Magazine

  • IEEE.org
  • IEEE Xplore
  • IEEE Standards
  • IEEE Spectrum
  • More Sites

Engine Agnostic Graph Environments for Robotics (EAGERx): A Graph-Based Framework for Sim2real Robot Learning

June 24, 2025 by Bas van der Heijden, Jelle Luijkx, Laura Ferranti, Jens Kober, Robert Babuska

Sim2real, that is, the transfer of learned control policies from simulation to real world, is an area of growing interest in robotics due to its potential to efficiently handle complex tasks. The sim2real approach faces challenges due to mismatches between simulation and reality. These discrepancies arise from inaccuracies in modeling physical phenomena and asynchronous control, among other factors. To this end, we introduce EAGERx, a framework with a unified software pipeline for both real and simulated robot learning. It can support various simulators and aids in integrating state, action and time-scale abstractions to facilitate learning. EAGERx’s integrated delay simulation, domain randomization features, and proposed synchronization algorithm contribute to narrowing the sim2real gap. We demonstrate (in the context of robot learning and beyond) the efficacy of EAGERx in accommodating diverse robotic systems and maintaining consistent simulation behavior. EAGERx is open source and its code is available at https://eagerx.readthedocs.io.

For more about this article see link below.

https://ieeexplore.ieee.org/document/10631675

For the open access PDF link of this article please click here.

Filed Under: Features Tagged With: Codes, Control systems, Delays, Engines, Physics, Robot learning, Robot sensing systems, Simulation, Transfer learning

Primary Sidebar

Current Issue

Get the entire issue now.

 

About the Magazine

IEEE Robotics & Automation Magazine (RAM) has over 14,000 readers who are the people who drive this remarkable technology. More than half work in basic research and many of the others are top level engineers and decision-makers in industry.  This magazine highlights new concepts in Robotics and Automation that are applied to real-world systems. It delivers tutorial and survey papers by distinguished experts in the field, organizes focused special issues on hot topics, and provides a forum for disseminating and discussing emerging trends, novel achievements, and selected news relevant to the development of the whole community active in these fields worldwide.

Past Issues

Search

Footer

LINKS

Home | Contact IEEE | Accessibility |
Nondiscrimination  Policy | IEEE Ethics Reporting | Terms & Disclosures| IEEE Privacy Policy

© Copyright 2025 IEEE – All rights reserved. A public charity, IEEE is the world’s largest technical professional organization dedicated to advancing technology for the benefit of humanity.

ABOUT US

IEEE Robotics & Automation Magazine  publishes four issues per year: March, June, September and December.