Biomimetic robots have received significant attention in recent years. Among them, the wearable exoskeleton, which imitates the functions of the musculoskeletal system to assist humans, is a typical biomimetic robot. Given that safe human–robot interaction plays a critical role in the successful application of wearable exoskeletons, this work studies the clinical readiness of a multimodal fusion model that estimates hand force based on the surface electromyography (sEMG) and A-mode ultrasound signals of the forearm muscles. The proposed multimodal fusion model affords the biomimetic hand exoskeleton assisting the elderly in completing daily tasks or quantitatively assessing the recovery level of poststroke patients.